热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

探索|神经网络到底是如何思考的?MIT精英们做了这么一个实验室来搞清楚

向AI转型的程序员都关注了这个号☝☝☝作者|LarryHardesty等编译|ziqiZhang没错!人工智能是很火,神经网络也很

向AI转型的程序员都关注了这个号☝☝☝


640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

作者 | Larry Hardesty等

编译 | ziqi Zhang


没错!人工智能是很火,神经网络也很火,但你真的懂它吗?神经网络到底是怎么工作的?没有人知道。


它像一只黑匣子,我们可以用他,却理解不了它。可是最近,麻省理工学院(MIT)的精英们似乎找了答案。


这些精英们采用了什么方法?他们找出的答案又在多大程度上具有可信度呢?人们对这个方法有怎样的质疑?他们的方法能带领人们真正解开这个黑匣子的秘密吗?


AI科技大本营编译了这篇发表在麻省理工大学网站上的《神经网络如何思考》一文,以下,enjoy!



“神经网络”这一强大的工具,正在帮助人类实现越来越多的任务和梦想。比如,识别数字图像中特定的对象,文本翻译等......


可它的实质是什么?


你会说,“当然是通过对海量样本的训练,通过不断改变成千上万个内部参数,使其可以稳定可靠地执行我们布置的任务。”


你觉得理所应当,你觉得没毛病啊。神经网络不就是来干这个的吗?


但是,我们从来没有关心过这些参数到底是怎样驱动神经网络工作的。


如果我们能够深入到神经网络内部的工作原理,真正去搞懂里面的规则和运行方式,必将是一次伟大的理论探索,这将带领人类的研究再次跨越围栏,去到一个更广阔的世界。


因为,一旦人类掌握了神经网络的真正运行方式,就可以将这样的方式迁移到生活的各方各面,迁移到各种应用。


可是,要真正走进神经网络的内核,实在太难了,我们能做到吗?


在最近举行的2017年自然语言处理方法实践大会上(Empirical Methods on Natural Language Processing),MIT人工智能实验室的研究人员就提出了一个新的思路——通过研究神经网络进行NLP任务的过程,他们做到了让电脑用我们日常的语言来解释随意输入的文本,这跟过去从数据库中查找结构化语言的方法有完全相反。


该技术适用于任何以文本作为输入,并以字符串结果作为输出的系统,例如常用的自动翻译系统。由于其分析的结果仅仅源自于不同的输入和对这些输出的效果反馈,因此它可以直接投入到在线的自然语言处理服务器上使用,而无需访问底层的软件。


事实上,该项技术还可以应用于任何以“黑箱技术”作为内部原理的文本处理系统当中,因为他们都不考虑内部的运行过程。研究人员表明,在他们的实验中,“神经网络”在人类翻译的工作中展现出与人类思维相同的特质!



别吵了,做实验吧!


虽然该项技术主要针对的是自然语言处理,但是它的核心思想与计算机视觉任务的神经网络是有点类似的。


举个例子,大家应该比较熟悉目标检测系统,通俗一点说,它的原理是将图像划分成不同的部分,然后将划分以后的图像重新返还给目标识别器,最后根据图像的特征进行分类。


对于目标检测来说,这个方法很好实现,但是运用到自然语言处理上就存在很大的难度。


对此,MIT电子工程和计算机科学系的教授Tommi Jaakkola就提出质疑:这样的拆分难道不会破坏一个句子的语义性吗?


这位教授正是该论文的两个作者之一,她这样分析:我们不能仅仅做一个简单的随机过程就提出一种方法,你要能预测相对复杂的对象,比如在一句话中,这种方法的意义又是什么?


有趣的是,论文的第一作者,同是MIT电气工程与计算机科学系的研究生David Alvarez-Melis,则使用这一黑箱-神经网络来生成测试语句,然后再用这一测试集对黑箱-神经网络的性能进行测试。


他们具体是怎么测试的呢?


首先,他们训练了一个可以压缩和解压缩我们日常语句的网络,把这一网络作为黑箱神经网络的中间一层。压缩就是将语句以数字的表现形式打包,从而方便信息传递;


解压缩就是让打包后的语句重新扩展成之前的原始形式。在神经网络训练的过程中,系统会根据解码器的输出与编码器的输入的匹配程度,同时对编码器和解码器进行调整。


这里,不得不提一句。


神经网络的本质是一个概率问题,为什么这么说呢?


对于一个目标检测的系统,假如我们对“喂小狗”这一图像进行检测,神经网络判别的结果可能是:图像的主体70%的概率是狗,25%的概率是猫,因此系统识别出我们喂的小狗而不是小猫。


同样,在Jaakkola和Alvarez-Melis的句子压缩网络中,他们为解码语句中的每个单词都提供了替代词汇,以及每种替代词汇的概率。


我们可以这样理解,因为网络会自然地选择具有共现关系的词汇(co-occurrence)来增加其解码正确率,具有相同概率的词汇一般都是通过聚类的方法找到具有相同语义关联的词汇。


例如,编码的语句是“She gasped in surprise”(她惊讶得喘不上气),系统会自动将“She squealed in surprise”(她惊讶得尖叫)以及“She gasped in horror”(她惊恐得喘不上气)这类替代语句分配为相当高的解码概率。


但是同时,也会降低“She swam in surprise”(她惊讶得游泳)和“She gasped in coffee”(她在咖啡中喘气…)这类型的语句的解码概率。


之后,对于任何语句来说,系统都能产生一个与其相关的语句列表,Jaakkola和Alvarez-Melis把这个由黑箱-神经网络生成的语句列表,再次放入黑箱-神经网络当中。其结果就是得到一个新的输入-输出对的列表,通过这个判别式列表,研究人员可以进一步分析出:哪些输入导致哪些内部变化,从而导致哪些输出。



来,测试一下


研究人员将这个技术应用到三种不同的自然语言处理系统当中,一个是用来推断词语发音的系统,另一个是常用的翻译系统,最后一个是能对任何问题提供合理答案的简单人机对话系统。


通过对翻译系统的翻译结果进行分析表明:在输入和输出序列中,单词的依赖性很强。这与人们的预期相似,有趣的是,机器翻译系统在对文本进行翻译的时候,对性别的辨别有时候与我们人类的预期总是存在较大的偏差。


例如,在英语中“dancer”(舞蹈演员)是一个不考虑性别的词汇,也就是一个中性词汇。但是在法语中,舞蹈演员却区分为“danseur”(男舞蹈演员)和“danseuse”(女舞蹈演员)。当


这个翻译系统将“The dancer is charming”(这个舞蹈演员很迷人)这句话翻译成法语时,通常会翻译成“la danseuse est charmante.”(这个女舞蹈演员很迷人)。这是因为翻译系统理解“女舞蹈演员”可能跟“迷人”这个单词更加搭配,也就忽视了其实翻译的初衷并没有考虑舞蹈演员的性别这一事实。


这也可以看出来,在一句话中,不同的形容词(charming)会对其它词语(dancer)的翻译造成影响。


对于人机对话系统,它从好莱坞电影的桥段中选取双线进行了训练和测试,但是这个系统的测试结果却差强人意,尽管研究人员选取了一个很大的训练集去训练,但是由于网络自身过于渺小,使得网络不能完全利用这些训练数据。


Alvarez-Melis解释说:“我们做的这个系统确实是有缺陷的,如果你设计了一个黑箱模型但是没有获得预期的效果,你能一上来就直接用这种模型来解决实际问题吗。当下还是先去修复系统、提升系统的性能,理解到底是什么原因造成这样的错误再说吧”。


在这种情况下,研究人员的分析结果说明了:人机对话系统通常会在输入对话框中键入一些关键字,这些关键字被用来生成一些固定的对话模板。例如:对于一些提问的开头是“谁”和“什么”的时候,对话系统的回答通常是“我不清楚你在说什么”。


原文地址

http://news.mit.edu/2017/how-neural-networks-think-0908


— end —



AI公开课

主题:让机器读懂你的意图——人体姿态估计入门

时间:9月26日晚8点

嘉宾:曾冠奇,便利蜂智能零售实验室团队负责人

内容:

  • 人体姿态估计在新零售的应用点

  • 人体姿态估计的整个知识结构树

  • 人体姿态估计一个流派的论文、算法和代码解析

扫码报名

0?wx_fmt=png


主题:深度学习中基础模型性能的思考和优化

时间:已结课(可看复播)

嘉宾:吴岸城 菱歌科技首席算法科学家

扫码学习:

0?wx_fmt=png


主题:XGBoost模型原理及其在各大竞赛中的优异表现

时间:已结课(可看复播)

嘉宾:卿来云 中科院副教授

扫码学习:

0?wx_fmt=png


主题:深度学习入门及如何转型AI领域

时间:已结课(可看复播)

嘉宾:覃秉丰 深度学习技术大咖

扫码学习:

0?wx_fmt=png


以上课程都是免费的哦,快上车~~

0?wx_fmt=png


 ☞ 点赞和分享是一种积极的学习态度


推荐阅读
  • 本文回顾了作者初次接触Unicode编码时的经历,并详细探讨了ASCII、ANSI、GB2312、UNICODE以及UTF-8和UTF-16编码的区别和应用场景。通过实例分析,帮助读者更好地理解和使用这些编码。 ... [详细]
  • Python与R语言在功能和应用场景上各有优势。尽管R语言在统计分析和数据可视化方面具有更强的专业性,但Python作为一种通用编程语言,适用于更广泛的领域,包括Web开发、自动化脚本和机器学习等。对于初学者而言,Python的学习曲线更为平缓,上手更加容易。此外,Python拥有庞大的社区支持和丰富的第三方库,使其在实际应用中更具灵活性和扩展性。 ... [详细]
  • 本文深入探讨了NoSQL数据库的四大主要类型:键值对存储、文档存储、列式存储和图数据库。NoSQL(Not Only SQL)是指一系列非关系型数据库系统,它们不依赖于固定模式的数据存储方式,能够灵活处理大规模、高并发的数据需求。键值对存储适用于简单的数据结构;文档存储支持复杂的数据对象;列式存储优化了大数据量的读写性能;而图数据库则擅长处理复杂的关系网络。每种类型的NoSQL数据库都有其独特的优势和应用场景,本文将详细分析它们的特点及应用实例。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 本文详细介绍了在Linux系统上编译安装MySQL 5.5源码的步骤。首先,通过Yum安装必要的依赖软件包,如GCC、GCC-C++等,确保编译环境的完备。接着,下载并解压MySQL 5.5的源码包,配置编译选项,进行编译和安装。最后,完成安装后,进行基本的配置和启动测试,确保MySQL服务正常运行。 ... [详细]
  • 【妙】bug称它为数组越界的妙用
    1、聊一聊首先跟大家推荐一首非常温柔的歌曲,跑步的常听。本文主要把自己对C语言中柔性数组、零数组等等的理解分享给大家,并聊聊如何构建一种统一化的学习思想 ... [详细]
  • Python 数据可视化实战指南
    本文详细介绍如何使用 Python 进行数据可视化,涵盖从环境搭建到具体实例的全过程。 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
  • 在C#编程中,数值结果的格式化展示是提高代码可读性和用户体验的重要手段。本文探讨了多种格式化方法和技巧,如使用格式说明符、自定义格式字符串等,以实现对数值结果的精确控制。通过实例演示,展示了如何灵活运用这些技术来满足不同的展示需求。 ... [详细]
  • 当前物联网领域十大核心技术解析:涵盖哪些关键技术?
    经过近十年的技术革新,物联网已悄然渗透到日常生活中,对社会产生了深远影响。本文将详细解析当前物联网领域的十大核心关键技术,包括但不限于:1. 军事物联网技术,该技术通过先进的感知设备实现战场环境的实时监测与数据传输,提升作战效能和决策效率。其他关键技术还包括传感器网络、边缘计算、大数据分析等,这些技术共同推动了物联网的快速发展和广泛应用。 ... [详细]
  • 深入浅出解读奇异值分解,助你轻松掌握核心概念 ... [详细]
  • 从2019年AI顶级会议最佳论文,探索深度学习的理论根基与前沿进展 ... [详细]
  • 当前,众多初创企业对全栈工程师的需求日益增长,但市场中却存在大量所谓的“伪全栈工程师”,尤其是那些仅掌握了Node.js技能的前端开发人员。本文旨在深入探讨全栈工程师在现代技术生态中的真实角色与价值,澄清对这一角色的误解,并强调真正的全栈工程师应具备全面的技术栈和综合解决问题的能力。 ... [详细]
  • 步入人工智能新时代,掌握这些关键知识点至关重要。AI技术将成为人类的重要辅助工具,不仅能够扩展和增强人类的智能,还能帮助我们实现更加卓越的成就。新一代人工智能技术的发展将为各行各业带来深远的影响,推动社会进步与创新。 ... [详细]
  • 图像分割技术在人工智能领域中扮演着关键角色,其中语义分割、实例分割和全景分割是三种主要的方法。本文对这三种分割技术进行了详细的对比分析,探讨了它们在不同应用场景中的优缺点和适用范围,为研究人员和从业者提供了有价值的参考。 ... [详细]
author-avatar
Vin-莹持_366
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有